Automatic Interpretation and Coding of Face Images Using Flexible Models

نویسندگان

  • Andreas Lanitis
  • Christopher J. Taylor
  • Timothy F. Cootes
چکیده

Face images are difficult to interpret because they are highly variable. Sources of variability include individual appearance, 3D pose, facial expression , and lighting. We describe a compact parametrized model of facial appearance which takes into account all these sources of variability. The model represents both shape and gray-level appearance , and is created by performing a statistical analysis over a training set of face images. A robust multiresolution search algorithm is used to fit the model to faces in new images. This allows the main facial features to be located , and a set of shape , and gray-level appearance parameters to be recovered. A good approximation to a given face can be reconstructed using less than 100 of these parameters. This representation can be used for tasks such as image coding, person identification, 3D pose recovery, gender recognition , and expression recognition. Experimental results are presented for a database of 690 face images obtained under widely varying conditions of 3D pose, lighting , and facial expression. The system performs well on all the tasks listed above.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

An Automatic Face Identification System Using Flexible Appearance Models

We describe the use of flexible models for representing the shape and grey-level appearance of human faces. These models are controlled by a small number of parameters which can be used to code the overall appearance of a face for image compression and classification purposes. The model parameters control both inter-class and within-class variation. Discriminant analysis techniques are employed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1997